Stanislaus County Agricultural Report 2017

— It Begins with Water —

TABLE OF CONTENTS

Letter to CDFA Secretary	2
Cover Story	3
Top Ten Commodities	4
Summary	5
Apiary Products	6
Field Crops	7 - 8
Fruit & Nut Crops	9 - 10
Livestock & Poultry	11 - 12
Livestock & Poultry Products	13
Nursery Products	14
Organic / Other Agriculture	15
Vegetable Crops	16
UC Feature Articles	17 - 18
Pest Detection Projects	19 - 20
County Exports	21 - 22
Awards & Honors	23
Connecting with Industry	24
Water District Map	25
Water History	26
50 Years of Rainfall	27
County Ag Facts	28
Department Programs	29
Staffing	30

Special thanks to our 2017 Agricultural Report team members: Susan Azevedo, Theresa Becchetti, Sue Boelk, Cassy Costa, Jennifer Heguy, Richard Homer, Steve Logan, Amy Lomeli, Cari Miller, and Tania Thomas

Stanislaus County Agricultural Report

STANISLAUS COUNTY AGRICULTURAL COMMISSIONER

Karen Ross, Secretary

California Department of Food and Agriculture and

The Honorable Board of Supervisors of Stanislaus CountyKristin OlsenDistrict 1Vito ChiesaDistrict 2Terry WithrowDistrict 3, Vice-ChairmanDick MonteithDistrict 4Jim DeMartiniDistrict 5, Chairman

Milton O'Haire Agricultural Commissioner/ Sealer of Weights & Measures

In accordance with Section 2279 of the California Food and Agricultural Code, we are pleased to submit Stanislaus County's Agricultural Report for 2017. This report provides a statistical description of Stanislaus County's agricultural production and highlights some of the important issues the agricultural industry is facing. We must emphasize that this report represents gross values of agricultural commodities and does not reflect production costs or profits.

The value of agricultural commodities produced last year in Stanislaus County increased by 12% to \$3,648,192,000. This represents an increase of \$386,781,000 from the 2016 report of \$3,261,411,000. Almonds, organic commodities, nursery, milk, walnuts and vegetables all experienced significant increases in total value. Almonds posted the largest increase at \$125 million with more harvested acres and higher yields, followed by organic products at \$99 million which is attributed to higher prices and more organic producers in the county. Substantial decreases in the value of peaches and chickens were noted. Harvested acres increased by more than 18,000 as plantings continued to rebound from the drought that ended in 2015.

We wish to express our appreciation to the agricultural producers, industry representatives and public agencies that provided data for this report. We would also like to express our thanks to the Agricultural Commissioner and UC Cooperative Extension staff that compiled, designed and edited this report.

Respectfully submitted,

litto Olfai

Milton O'Haire Agricultural Commissioner/ Sealer of Weights & Measures Stanislaus County

umeer

Roger Duncan County Director, UC Cooperative Extension Stanislaus County

COUNTY OF STANISLAUS AGRICULTURAL COMMISSIONER

3800 Cornucopia Way, Ste. B, Modesto, CA 95358 ~ tel (209) 525-4730 ~ fax (209) 525-4790 ~ stanag.org

"Our Economy is Based on Water as Much as it is Based on Agriculture"

It Begins with Water

Milton O'Haire Agricultural Commissioner

It could be said that of the three major natural resources required to farm, water is the most important. A crop, although it might be limited, can be produced in poor soils and unfavorable weather conditions, but **nothing will be grown without water.**

In the mid-1800's, the early settlers in the San Joaquin Valley were blessed with fertile soil and weather conducive for dryland farming and raising cattle. Having to rely on winter seasonal rainfall left much of the valley parched during the best growing months of the year. These were the conditions until farmers joined forces with urban residents to approve irrigation districts, harnessing the waters that flowed from the Sierra Nevada Mountains, turning the valley into the agricultural oasis we know today.

A quote attributed to Mark Twain after he visited California is, "Out there they use whiskey for drinking and they save the water for fighting." This quote could have easily applied to the formation of the irrigation districts in the Central Valley. Chief among those districts are the Turlock Irrigation District (TID) which is the first and oldest public irrigation district in the state having been formed on June 6th of 1887. Modesto Irrigation District (MID) formed a month later. There are now more than ten (10) irrigation and water districts in the county. The founding of the irrigation districts began with legal fights that were ultimately settled at the Supreme Court of the United States. The irrigation proponents knew their vision of a greener valley with a robust and diverse agricultural economy would not come about without great personal and material cost, but they believed it was worth their fight.

The development of the irrigation systems has transformed the landscape from large acreage wheat farms into a strong agricultural based economy producing hundreds of different crops. The agricultural industry, directly supports over 35% of the jobs in the county. **In a sense, our economy is based on water as much as it is based on agriculture.** Any major reduction in water supplies will have a ripple effect throughout our economy, negatively affecting agricultural and non-agricultural industries and every resident.

Today, California agriculture feeds the nation and the world and it would not be possible without the vision of the early irrigationist that fought to bring water to the best agricultural regions in the state. The San Joaquin Valley is a prime example of that vision.

Over the past 130 years, locally controlled irrigation and water districts have proven they are more than capable of managing our water supplies through times of drought and abundant rain. They have balanced the water demands of agriculture and urban residents, the necessity for safe drinking water, water for fish and the environment, and the need to replenish groundwater supplies. They continue to meet these demands in partnership with growers and residents utilizing numerous environmental studies and implementing water delivery methods to preserve water resources and lessen impacts to the environment.

The irrigation district founders determined that bringing water to a thirsty valley was worth the fight for them and for the generations that would follow. Without this continued commitment, parts of the valley are destined to return to something resembling the parched grasslands that preceded the formation of the irrigation districts. It took the farmer and the city resident joining forces to establish the irrigation districts that would green the valley and build an economy for all. The question for us now is, are we willing to continue that fight to keep this valley green?

TOP 10 COMMODITIES

		CATEGORY	2017 VALUE	2016 VALUE
1		Almonds, All	\$1,056,184,000	\$930,825,000
2	2	Milk, All	\$663,650,000	\$611,894,000
3	3	Chickens, All	\$254,695,000	\$295,132,000
4		Cattle & Calves, All	\$232,962,000	\$246,258,000
5	5	Nursery Fruit & Nut Trees & Vines	\$226,748,000	\$162,685,000
6		Walnuts	\$163,644,000	\$134,505,000
7	y)	Silage, All	\$134,103,000	\$117,531,000
8	3	Turkeys, All	\$84,096,000	\$69,910,000
9	, ,	Pollination, Almond	\$67,683,000	\$65,383,000
10	0	Peaches, All	\$52,198,000	\$68,111,000
		TOTAL TOP 10	\$2,935,963,000	\$2,702,234,000
		All Other Commodities	\$712,229,000	\$559,177,000
		TOTAL ALL COMMODITIES	\$3,648,192,000	\$3,261,411,000

"WATER IS THE DRIVING FORCE OF ALL NATURE"

SUMMARY

Category	Year	Harvested Acres	Total Value
	2017		\$80,706,000
Aplary Products	2016		\$76,768,000
Field Orean	2017	681,366	\$207,574,000
Field Crops	2016	674,310	\$185,744,000
	2017	250,757	\$1,392,747,000
Fruit and Nut Crops	2016	244,747	\$1,248,457,000
Live she als and Davillar	2017		\$582,477,000
Livestock and Poultry	2016		\$622,473,000
Live she als are al Daville s Dra als sate	2017		\$715,117,000
Livestock and Poulity Products	2016		\$649,556,000
	2017	2,884	\$271,049,000
NUISERY Products	2016	2,677	\$204,797,000
Organia Braduata	2017	8,577	\$199,409,000
Organic Products	2016	8,507	\$99,696,000
	2017	779	\$19,793,000
Other Agriculture	2016	551	\$17,738,000
Vagatable Crans	2017	28,630	\$179,320,000
vegerable Crops	2016	24,027	\$156,182,000
Total	2017	972,993	\$3,648,192,000
	2016	954,819	\$3,261,411,000

APIARY PRODUCTS

Category	Year	Total	Unit	Per Unit	Total Value
Poosway 1	2017	577,896	LB	\$3.50	\$2,023,000
DEESWUX	2016	559,400	LB	\$3.37	\$1,885,000
Honovi	2017	4,956,973	LB	\$2.08	\$10,311,000
попеу	2016	4,798,400	LB	\$1.85	\$8,877,000
Pollination Almond	2017	375,244	Colony	\$180.37	\$67,683,000
FOIIINGTION, AILHONG	2016	363,240	Colony	\$180.00	\$65,383,000
Pollingtion Mico 2	2017				\$689,000
FOIIITIQHOTI, MISC	2016				\$623,000
Total	2017				\$80,706,000
ΤΟΙΟΙ	2016				\$76,768,000

1 Honey and Beeswax are based on resident colonies plus the value of the colonies during almond pollination season

2 Pollination, Misc. includes: Apple, Blueberry, Cherry, Cucumber, Melons, Onion, Pumpkin, Queen & Bulk Bees, Squash

FIELD CROPS

Category	Year	Harvested Acres	Per Acre	Total	Unit	Per Unit	Total Value
Beans, Dried	2017	9,664					\$13,011,000
All	2016	11,018					\$17,529,000
Distalk Evend	2017	1,007	1.19	1,200	Ton	\$925	\$1,110,000
BIACK-EYEA	2016	1,313	1.27	1,670	Ton	\$905	\$1,511,000
Delay Line en	2017	625	1.05	656	Ton	\$810	\$531,000
Baby Limas	2016	508	1.45	737	Ton	\$820	\$604,000
	2017	7,841	1.07	8,400	Ton	\$1,295	\$10,878,000
Large Limas	2016	8,908	1.15	10,200	Ton	\$1,450	\$14,790,000
Beans, Dried	2017	191	1.30	248	Ton	\$800	\$198,000
Other	2016	289	1.10	318	Ton	\$840	\$267,000
Poop Straw	2017			8,400	Ton	\$35	\$294,000
Bean Siraw	2016			10,200	Ton	\$35	\$357,000
Hay Alfalfa	2017	21,351	6.44	138,000	Ton	\$186	\$25,668,000
nay, Alialia	2016	22,968	7.08	163,000	Ton	\$148	\$24,124,000
Hay Oat	2017	10,313	3.16	32,600	Ton	\$111	\$3,619,000
пау, Оаг	2016	11,431	3.18	36,400	Ton	\$100	\$3,640,000
Hay Other 1	2017	10,974					\$5,310,000
nuy, Omer	2016	10,921					\$2,606,000
Pasture,	2017	32,500			Acre	\$305	\$9,913,000
Irrigated	2016	32,500			Acre	\$291	\$9,458,000

FIELD CROPS (cont.)

Category	Year	Harvested Acres	Per Acre	Total	Unit	Per Unit	Total Value
Dependend	2017	421,949			Acre	\$29	\$12,237,000
Kangelana	2016	421,949			Acre	\$21	\$8,861,000
	2017	171,512					\$134,103,000
Slidge, All	2016	161,401					\$117,531,000
Corp	2017	92,472	25.82	2,388,000	Ton	\$41	\$97,908,000
Com	2016	91,247	26.63	2,430,000	Ton	\$39	\$94,770,000
Other ²	2017	70,940					\$32,865,000
Omer-	2016	61,216					\$19,797,000
Sudan	2017	8,100	13.65	111,000	Ton	\$30	\$3,330,000
300011	2016	8,938	12.76	114,000	Ton	\$26	\$2,964,000
Mico 3	2017	3,103					\$3,713,000
101150.	2016	2,122					\$1,995,000
Total	2017	681,366					\$207,574,000
	2016	674,310					\$185,744,000

 Hay Other includes: Clover, Grass, Sudan, Wheat and Winter Forage
 Silage, Other includes: Alfalfa, Barley, Broccoli Stalks, Grass, Oats, Ryegrass, Sorghum, Triticale, Vetch, Wheat, and Winter Forage
Miscellaneous includes: Barley, Corn Grain, Corn Human Consumption, Oat Grain, Rice, Safflower, Wheat

Grain, and Wheat Straw

FRUIT & NUT CROPS

Category	Year	Harvested Acres	Per Acre	Total	Unit	Per Unit	Total Value
	2017	188,000					\$1,056,184,000
Almonas, All	2016	182,000					\$930,825,000
	2017	188,000	1.13	212,000	Ton	\$4,848	\$1,027,776,000
Almona Meats	2016	182,000	1.04	189,000	Ton	\$4,800	\$907,200,000
	2017			424,000	Ton	\$65	\$27,560,000
Almond Hulls	2016			378,000	Ton	\$60	\$22,680,000
	2017			212,000	Ton	\$4	\$848,000
Almond Shells	2016			189,000	Ton	\$5	\$945,000
A • I	2017	3,853	8.20	31,600	Ton	\$649	\$20,508,000
Apricots	2016	3,733	9.76	36,400	Ton	\$658	\$23,951,000
	2017	3,067	2.52	7,700	Ton	\$3,493	\$26,896,000
Chemes	2016	2,605	1.92	5,000	Ton	\$3,420	\$17,100,000
	2017	514					\$5,344,000
	2016	497					\$4,966,000
	2017	9,811					\$42,722,000
Grapes, All	2016	10,427					\$50,180,000
	2017	5,995	10.57	63,000	Ton	\$477	\$30,051,000
кеа	2016	6,755	10.06	68,000	Ton	\$550	\$37,400,000
N40.11	2017	3,816	7.71	29,400	Ton	\$431	\$12,671,000
White	2016	3,672	8.16	30,000	Ton	\$426	\$12,780,000

Stanislaus County Agricultural Report

FRUIT & NUT CROPS (cont.)

Category	Year	Harvested Acres	Per Acre	Total	Unit	Per Unit	Total Value
Pagabas All	2017	5,629					\$52,198,000
reaches, Ail	2016	5,456					\$68,111,000
Cling	2017	4,949	17.07	84,000	Ton	\$456	\$38,304,000
Cling	2016	4,978	24.28	121,000	Ton	\$491	\$59,411,000
Franctana	2017	680	12.20	8,300	Ton	\$1,674	\$13,894,000
Treesione	2016	478	12.21	5,800	Ton	\$1,500	\$8,700,000
Walnuts	2017	36,618	1.86	68,100	Ton	\$2,403	\$163,644,000
VVGITIOTS	2016	36,568	1.91	69,800	Ton	\$1,927	\$134,505,000
Mico 2	2017	3,265					\$25,251,000
101130	2016	3,461					\$18,819,000
Total	2017	250,757					\$1,392,747,000
	2016	244,747					\$1,248,457,000

 Citrus includes: Grapefruit, Lemons, Oranges, Pomelos, and Tangerines
 Miscellaneous Includes: Apples, Avocados, Berries (Blackberries, Boysenberries, Blueberries, Raspberries, and Strawberries), Chestnuts, Figs, Kiwi, Nectarines, Olives, Pears, Pecans, Persimmons, Pistachios, Plums, Pluots, Pomegranates, Prunes, Quince, and Table Grapes

LIVESTOCK & POULTRY

Category	Year	Number of Head	Total Value
	2017	320,460	\$232,962,000
Cattle & Calves, All	2016	322,485	\$246,258,000
	2017	132,440	\$37,847,000
Beet Feeders '	2016	129,060	\$34,927,000
	2017	45,920	\$12,864,000
Beet Slaughter 2	2016	48,125	\$17,344,000
	2017	70,700	\$61,584,000
Dairy Slaughter 3	2016	75,300	\$61,407,000
	2017	71,400	\$120,667,000
Dairy Replacement	2016	70,000	\$132,580,000
	2017	19,908	\$2,972,000
Goats *	2016	19,008	\$2,325,000
	2017	3,791	\$661,000
sneep & Lamps 3	2016	3,822	\$853,000
	2017	22,992	\$3,076,000
Hogs & Pigs	2016	20,540	\$4,108,000

LIVESTOCK & POULTRY (cont.)

Category	Year	Number of Head	Total Value
Chickops All	2017	156,946,000	\$254,695,000
Chickens, All	2016	182,418,000	\$295,132,000
Turkova All ⁷	2017	8,550,000	\$84,096,000
TUREYS, AII	2016	5,159,000	\$69,910,000
Squab	2017	565,493	\$3,008,000
34000	2016	539,683	\$2,839,000
Camo Pirde 8	2017	75,160	\$1,007,000
Game birds *	2016	225,281	\$1,048,000
Total	2017		\$582,477,000
	2016		\$622,473,000

Beef Feeders includes: Feed Lots, Beef Steers, Beef Heifers, Beef Replacement Heifers, Transient Cattle, Drop Calves less Replacement Heifers
 Beef Slaughter includes: Beef Cows, Beef Bulls, Dairy Beef
 Dairy Slaughter includes: Cull Cows and Cull Bulls
 Goats includes: Cull Does, Cull Bucks, Meat Goats and Dairy Goat Kids

5 Sheep & Lambs includes: Cull Ewes, Cull Rams, Replacement Rams, Replacement Ewes, Lambs
6 Chickens, All includes: Chickens, Chicks

7 Turkeys, All includes: Turkeys, Poults

8 Game Birds includes: Chukar, Duck, Geese, Peacock, Pheasant, Partridge, Quail

LIVESTOCK & POULTRY PRODUCTS

Category	Year	Total	Unit	Per Unit	Total Value
	2017	39,395,000	CWT		\$663,650,000
Milk, All	2016	39,990,000	CWT		\$611,894,000
	2017	36,848,000	CWT	\$16.72	\$616,099,000
Market	2016	37,440,000	CWT	\$15.14	\$566,842,000
	2017	2,469,000	CWT	\$18.21	\$44,960,000
Manufacturing	2016	2,443,000	CWT	\$16.79	\$41,018,000
Milk, Goat	2017	78,000	CWT	\$33.22	\$2,591,000
	2016	107,000	CWT	\$37.70	\$4,034,000
	2017	29,936,000	DOZ	\$1.45	\$43,407,000
Eggs, Chicken Market	2016	24,030,000	DOZ	\$1.25	\$30,037,000
	2017				\$4,373,000
Eggs, Other '	2016				\$3,946,000
14112	2017	31,034	LB	\$1.65	\$51,200
WOOI ²	2016	31,300	LB	\$1.75	\$54,800
	2017	479,000	Ton	\$7.59	\$3,636,000
Manure ³	2016	514,000	Ton	\$7.05	\$3,624,000
	2017				\$715,117,000
Totol	2016				\$649,556,000

CWT = hundred weight

Eggs, Other includes: Turkey Hatching, Quail and Duck Eggs Wool includes: Alpaca Fiber and Sheep Wool 1

2

3 Manure includes: Cow, Chicken and Turkey

We find the Stanislaus County Agricultural Report

NURSERY PRODUCTS

Category	Year	Field Acres	Quantity Sold	Total Value
Fruit & Nut Trees	2017	853	29,000,000	\$226,748,000
and Vines	2016	780	27,388,000	\$162,685,000
Ornamental Trees	2017	497	2,428,000	\$28,321,000
& Shrubs	2016	516	2,509,000	\$27,699,000
Missellerseeus	2017	1,534		\$15,980,000
MISCEIIGNEOUS	2016	1,381		\$14,413,000
Total	2017	2,884		\$271,049,000
ΤΟΙΟΙ	2016	2,677		\$204,797,000

1 Miscellaneous includes: Almond Rootstock Seed, Christmas Trees, Lavender, Raspberry Transplants, Strawberry Transplants, Tomato Transplants, and Turf

ORGANIC PRODUCTS

Category	Year	Harvested Acres	Total Value
	2017	8,577	\$199,409,000
All Organic Products	2016	8,507	\$99,696,000

OTHER AGRICULTURE

Category	Year	Total	Unit	Per Unit	Total Value
Firewood	2017	70,400	Cord	\$235	\$16,544,000
FIrewood	2016	68,000	Cord	\$225	\$15,300,000
	2017				\$2,332,000
All Other Agriculture	2016				\$1,738,000
Sood Crops ²	2017	779	Acres		\$917,000
seed Crops -	2016	551	Acres		\$700,000
Total	2017				\$19,793,000
ΙΟΙΟΙ	2016				\$17,738,000

1 All Other Agriculture includes: Aquaculture (Bass & Catfish), Compost, Timber, Vermiculture (Worms, Worm Castings)

2 Seed Crops includes: Black-eyed Bean, Chickpea, Lima Bean, Oat, Onion, Rice, Squash, Tomato, Vegetable

VEGETABLE CROPS

Category	Year	Harvested Acres	Per Acre	Total	Unit	Per Unit	Total Value
Beans,	2017	1,882	1.10	2,070	Ton	\$810	\$1,677,000
Succulent	2016	2,033	1.25	2,540	Ton	\$870	\$2,210,000
	2017	2,931					\$32,303,000
Meions, All	2016	3,240					\$32,026,000
Dupporting	2017	377	17.00	6,400	Ton	\$529	\$3,386,000
Pumpkins	2016	239	16.62	3,970	Ton	\$495	\$1,965,000
Sweet Potatoes	2017	2,123	16.00	33,970	Ton	\$660	\$22,420,000
	2016	1,643	18.40	30,230	Ton	\$925	\$27,963,000
Tomatoos All?	2017	10,377					\$47,925,000
iomaioes, Ali -	2016	10,718					\$47,541,000
	2017	10,940					\$71,609,000
MISCEIIGNEOUS	2016	6,154					\$44,477,000
Total	2017	28,630					\$179,320,000
Ισται	2016	24,027					\$156,182,000

1 Melons, All includes: Cantaloupe, Hami, Honeydew, Watermelon

Tomatoes, All includes: Caritaloupe, Ham, Horeydew, Watermeion
 Tomatoes, All includes: Fresh, Processing
 Miscellaneous includes: Artichoke, Asparagus, Beet, Broccoli, Brussel Sprout, Cabbage, Carrot, Cauliflower, Chinese Greens, Cucumber, Daikon, Eggplant, Garlic, Herb-Spice, Kale, Kohlrabi, Lettuce-Head, Lettuce-Leaf, Mustard Greens, Okra, Onion-Dry, Onion-Green, Parsley, Pea, Peppers, Potato, Radish, Spinach, Squash All, Sweet Basil, Swiss Chard, Tomatillo, Turnip, Vegetable, Vegetable Leaf

Sorghum Silage - How Can We Best Utilize Sorghum in California Dairy Rations

Jennifer Heguy, Dairy Farm Advisor, UC Cooperative Extension, Stanislaus County

Stanislaus County ranks 4th in California milk production, accounting for ~10% of the state's milk. Forages are essential in dairy cow rations to ensure full rumen function and efficient utilization of ingested nutrients to support milk production. California dairy farmers have emphasized homegrown, high quality forages (e.g. hays and silages) to offset increases in commodity prices and enhance the economic security of their feed supply. This is particularly important for California dairy farms because the major operating cost is feed.

Water availability, and its uncertainty, may hinder our ability to produce the highquality forage needed for California dairy cows. University of California Agriculture and Natural Resources has funded a project to determine sorghum's potential in California feeding systems. Unlike corn, sorghum is better adapted to drought/ water stress conditions. The overall goal is to determine the value of sorghum as silage with regards to efficiency of irrigation water use, as well as quantity and nutritional quality of the silage produced.

What we've seen so far:

Advantages of sorghum for silage include decreased seed costs, decreased fertilizer needs, and potential for water savings. Unfortunately, the quality of sorghum we've sampled thus far has varied greatly.

- Sugarcane aphid more than likely impacted sorghum quality in 2016, which was the first year the pest was detected in California. Talk with your crop consultant and be on the lookout for this invasive pest.
- Plan before harvest. What animals will receive sorghum silage and what is the optimal chop length, stage of harvest, etc.? Particle separator results indicate very coarsely chopped, long particles that may be sorted in total mixed rations.
- Sorghum is not corn; our samples showed lower levels of starch and non-fibrous carbohydrates (NFC), with higher fiber content than typical corn silages. Talk with your nutritionist to best determine how to incorporate sorghum into your feeding system.

Still in the beginning phases of the work, we are analyzing the data to determine the most promising sorghum type and management system to conduct a commercial feeding study. The end goal is to determine maximum inclusion rates of sorghum silage into dairy rations, without compromising animal performance and health.

Stanislaus County Agricultural Report

For project updates and more information, please visit:

http://cestanislaus.ucanr.edu/Agriculture/Dairy_Science/

Invasive Grasses on Rangelands

Theresa Becchetti, Livestock and Natural Resource Advisor, UC Cooperative Extension, Stanislaus County

Ranchers depend on a forage crop every winter to feed their cattle. However, we have had invasive grasses expand over the years, diminishing the grazing capacity. Late maturing, Medusahead and Barbed Goatgrass will still be green when cattle are shipped, giving the appearance that there is plenty of forage left for the fall. But look closer, that green grass is not what you want to see since they are not palatable to livestock. For these weeds, our seasonal grazing has allowed them to expand almost unchecked. Our most recent research has demonstrated the impact of Medusahead on the ranch bottom line. For every 10% reduction in Medusahead, there is an average increase of \$40 per acre potential (range from \$9 to \$71) increase in revenue. This is not in individual animal gains, but the ability to increase the number of cattle that can be grazed per acre. Some of the practices to reduce Medusahead may cost upwards of \$40 per acre in the first year and should remain effective for a few years, providing for a financial incentive to control Medusahead.

While Medusahead is fairly widely established and has been for many years (photo documentation from the early 1980's shows high levels of Medusahead), Barbed Goatgrass is still very limited in Stanislaus County and landowners should monitor their ranches for it.

CONTROL	TIMING	SPECIAL CONSIDERATIONS
Grazing	Mid April – early May; prior to seed development in invasives	Create high stock density so livestock eat invasive grasses
Burning	Late spring - annual grasses are dry, invasives are green	Air Board restrictions; forage following fire
Fertilization	February; 30 - 60 lbs N/acre	Best in drought years. More forage and increases palatability of invasives
Mowing	Mid April - early May; prior to seed development in invasive grasses	If too many rocks, sparks may cause fire from mowing
Glyphosate	Late March before invasive grass seeds developed but after desirable grass seeds developed	Timing critical to not kill desirable forage
Aminopyralid	Fall	High rates (7-15 oz/acre) are needed
Aminopyralid	Spring	Sterilizes seed at low rates (3 oz/acre)

Below is a table with management options we have found to be successful. There is no long-term, silver bullet, since the grasses tend to re-invade an area when surrounding areas are not controlled.

Barbed Goatgrass has recently started to increase on our rangelands, but with the similarities between the two grasses, we are confident the same strategies will work for both. For more information please visit http://ucanr.edu/sites/StanLivestock2017/Rangeland_Plants/Invasive_Plants/

PEST DETECTION EMERGENCY PROJECTS 2017

To protect the agricultural and horticultural industries in Stanislaus County, 6,290 traps were placed to monitor for specific invasive insects. Some of the traps use an insect pheromone to attract the insect into the trap, while some use a food bait, and others use a color attractant.

About 70% of traps are in residential yards, 20% in nurseries, and 10% in vineyards and orchards.

Trapping allows for early detection of invasive and destructive pests that would be detrimental to our economy, the environment, and public health.

Target pests are shown with corresponding trap

Red Imported Fire Ant

Properties Trapped: 15 Crops Affected: Infests agricultural and residential settings, as well as natural habitats - dangerous to children, pets, the elderly, and wildlife

European Corn Borer Traps Deployed: 8 Crops Affected: Corn, green bean, oat, potato,

and rhubarb

European Grapevine Moth

Traps Deployed: 432 Crops Affected: Grapes and spurge laurel

19

Traps Deployed: 221 Crops Affected: Apple, apricot, citrus,

pear, plum, peach,

nectarine, and pomegranate

Japanese Beetle

Traps Deployed: 204 Crops Affected: Roses and turf

Light Brown Apple Moth

Traps Deployed: 437 Crops Affected: Alfalfa, almond, apple, berries, broccoli, citrus, corn, grapes, stone fruit, and tomato

Gypsy Moth Traps Deployed: 204 Crops Affected: Most trees

Oriental Fruit Fly

Traps Deployed: 436 Crops Affected: Apple, citrus, cucumber, fig, grape, pear, pomegranate, stone fruit, tomato, and walnut

Asian Citrus Psyllid

Traps deployed: 1,720 Crops Affected: Citrus (vector for Huanglongbing Disease)

Glassy-Winged Sharpshooter

Traps Deployed: 1,876 Crops Affected: Almond, citrus, grape and peach (vector for Pierce's Disease in grapes)

Apple Maggot Traps Deployed: 39 Crops Affected: Pome & stone fruit

Melon Fruit Fly

Traps Deployed: 221 Crops Affected: Apple, bean, cantaloupe, cucumber, grape, orange, peach, pear, tomato, and watermelon

Mediterranean Fruit Fly

Traps Deployed: 436 Crops Affected: Almond, apricot, apple, citrus, fig, grape, nectarine, olive, peach,

pear, plum, pomegranate, tomato, and walnut

2(

2017 EXPORT CERTIFICATES

Export Certificates are issued to certify that the commodity meets the plant cleanliness requirements of the importing country. Not all countries require export certificates.

21

Other countries exported to in 2017

COUNTRY	CERTS	COUNTRY	CERTS	COUNTRY	CERTS	COUNTRY C	ERTS	COUNTRY	CERTS
Japan	1012	Algeria	31	Bolivia	12	Croatia	6	France	122
Spain	919	Angola	1	Brazil	97	Czech Republic	c 3	French Polyr	nesia 48
Hong Kong	752	Argentina	67	Bulgaria	21	Denmark	12	Georgia	1
Korea, Republic o	f 751	Australia	140	Burkina Faso	o 1	Dominican Rep.	16	Greece	29
Germany	536	Austria	15	Cameroon	1	Ecuador	15	Grenada	2
Turkey	473	Azerbaijan	3	Canada	19	Egypt	50	Guatemala	45
United Arab Emirat	tes 443	Bahrain	18	Chile	98	El Salvador	6	Guyana	1
India	369	Barbados	4	China	263	Estonia	9	Honduras	17
Italy	336	Belarus	2	Colombia	30	Ethiopia	2	Hungary	2
Netherlands	270	Belgium	61	Costa Rica	17	Finland	1	Indonesia	87
								Iran, Islamic	Rep. 25

COMMODITY	PERCENT OF CERTS ISSUED
ALMONDS	62%
WALNUTS	22%
SEEDS	12%
BEANS	1%
OTHER	3%

Total Certificates Issued in 2017

9,895 to 106 Countries

Falls

COUNTRY	CERTS	COUNTRY CEF	RTS	COUNTRY	CERTS	COUNTRY C	ERTS	COUNTRY	CERTS
Iraq	27	Lithuania	27	Norway	38	Serbia	5	Thailand	167
Ireland	4	Macedonia	2	Oman	4	Singapore	81	Trinidad & To	bago 8
Israel	135	Malaysia	83	Pakistan	53	South Africa	58	Tunisia	7
Jamaica	14	Mexico 2	228	Panama	6	Sri Lanka	4	Uganda	1
Jordan	187	Moldova	1	Peru	89	Sudan	15	Ukraine	12
Kazakhstan	31	Morocco	39	Philippines	41	Suriname	1	United Kingdo	om 254
Kenya	6	Nepal	1	Poland	14	Sweden	35	Uruguay	7
Kuwait	39	New Caledonia	4	Portugal	22	Switzerland	82	Vietnam	220
Latvia	18	New Zealand	47	Qatar	24	Syrian Arab Re	p. 9	Yemen	24
Lebanon	143	Nicaragua	7	Romania	3	Taiwan	182	Zambia	2
Libya	8	Nigeria	1	Saudi Arabia	108	Tajikistan	2	Zimbabwe	4
			-						200
							WW\	w.stanaa.org	a (ZZ

NATIONAL AG SCIENCE CENTER HALL OF FAME 2017 RECIPIENT - MODESTO JUNIOR COLLEGE

Adapted from the National Ag Science Center Press Release

For nearly 100 years, the Modesto Junior College Agriculture Department has prepared students for future careers. MJC Agriculture is one of the most exemplary and comprehensive community college agriculture programs in the nation offering 16 Associate of Science Degrees and 13 Technician Certificates. The department utilizes modern technology and practical hands-on approaches to student learning with industry collaboration.

The Modesto Junior College Agriculture and Environmental Sciences Department offers a unique blend of modern instruction offered by a diverse, talented and dedicated staff. It is the vision of the MJC Agriculture Department to continue to provide the most outstanding agricultural education experience for the existing and future leaders of this dynamic and rich agricultural industry.

2017 RECIPIENT:

VITO CHIESA

STANISLAUS COUNTY FARM BUREAU DISTINGUISHED SERVICE AWARD

"Keep moving forward" are the guiding words that Vito learned from his father, Aroldo, at a young age. Vito's management skills began by assisting with the operation of the 350 acre family almond, walnut and peach ranch and walnut processing facility. A lifelong resident of Hughson, he attended Modesto Jr. College and Cal Poly, San Luis Obispo.

Vito has served locally as well as statewide in numerous leadership positions including President of the Stanislaus County Farm Bureau, 2017 Stanislaus County Fair Board, Director for the Modesto Chamber of Commerce, State Director for the California Farm Bureau and President of the California State Association of Counties.

Vito's adeptness in building consensus between differing parties by listening to all viewpoints has given him the reputation of a compassionate, dedicated and hard-working leader within the community. Most recently, as Stanislaus County Supervisor of District 2, Vito has been active in his role as public servant on issues ranging from agriculture, wildlife and water, to transportation and roadways, social services, and public safety, among others. Vito's commitment to civic service has proven a tremendous asset to the greater community, and especially those within agriculture.

CONNECTING WITH INDUSTRY

Bill Donahue, Ph.D

Senior Entomologist & Laboratory Director, Sierra Research Laboratories, Inc.

What is Integrated Pest Management (IPM)?

IPM is a process; methods that you can pick and choose to control various pests (weeds, insects, rodents, for example). IPM is ecology in action. It's applying the science to the boots on the ground pest management.

What challenges does IPM face?

Pests are very susceptible, initially, to new insecticides. But you don't ever control 100% in a field population. That remaining percentage becomes trouble. Insecticide resistance is a recurring theme, along with behavioral resistance. Robert van den Bosch from U.C. Berkeley called it the insecticide treadmill. We keep trying to come up with the silver bullet and the insects win every single time.

I understand farmers' complaints about regulations because they just want to get out and farm. I say the same thing about laboratory regulations-I just want to do research! Regulations are aimed at rogue operators that don't want to do it right, so everybody pays the price with increased regulation.

What is the future of IPM?

We've got to change our thinking about pest management. The farmers' livelihood is out there in the field. They don't want to vary too far from what's working. But if it's not working, I think people are more interested in looking at alternatives, so an IPM strategy becomes more appealing.

We're working on integrated pest management or resistance management strategies by understanding pest biology and ecology in relation to agricultural practices. For example, we're using insect growth regulators to control larval populations to break the reproductive potential of a pest population before they become adults. We're targeting applications and relying on pest trapping and using that data to see long term trends. We're really looking at a holistic approach to managing insects. **Rebecca Anderson** GLOBALG.A.P. Food Safety Technical Expert

How are food safety procedures implemented?

Pre-harvest, harvest and post-harvest sanitation are integral to food safety. This includes onfarm water microbial quality, timing of compost applications, sanitation of equipment between fields or commodities, cleanliness of gloves, cloths or brushes during harvest, and preventing infiltration of contaminated moisture to product in coolers. In the field, restrooms and handwashing stations encourage better hygienic practices.

What trends are on the horizon?

We often don't give enough credit to producers for how innovative and adaptable they are to change. Food safety will be a foundational tenet-not in addition to quality. It becomes an expectation.

Food Safety Modernization Act (FSMA) is being implemented, although private industry standards are already above and beyond what FSMA requires. FSMA contains common sense requirements (like handwashing). Training and record keeping will be the most significant challenge because of the time required to analyze and develop safer processes.

Companies are developing specific food safety training for farm labor contractors. Those certifications are becoming selling points for workerswho are usually involved in the risk-assessments. This makes the assessment stronger in real-life scenarios.

Food safety experts take assessments and prioritize risk-based approaches. This prevents illness in elevated risk products or processes, and products distributed over a large geographic area. Laboratory testing is not yet preventative. The lab infrastructure is not large enough to handle the potential workload.

Blockchain could standardize reporting of the movement of product, potentially in real-time. It's reliant on consistent and timely reporting, but could be an approach to increasing consumer demand for transparency and traceability–which is not required in FSMA.

STANISLAUS COUNTY WATER HISTORY

Turlock & Modesto Irrigation Districts founded; TID first irrigation district in the state	1887		
		1891	Construction of La Grange Dam (finished in 1893); highest dam in the country at the time
TID is the first publicly owned canal system in the nation to deliver irrigation water	1900		
Patterson water company		1909	Oakdale Irrigation District established
established (1998 became Patterson Irrigation District)	1910		
		1911	Modesto Reservoir completed
recorded at 4.30 inches	12-13	1913	Low rainfall inspires construction of Lake Davis; later known as Owens Lake and now Turlock Lake
West Stanislaus Irrigation District established	1920		
		1925	El Solyo Water District established
Del Puerto Water District established	1947		
Large floods on the Stanislaus River		1950	Record flooding on the Tuolumne River measured at 59,000 cfs in Waterford
inspire construction of New Melones Dam in 1966 (completed in 1979)	1955		Record flooding recorded on
10		1958	Orestimba Creek at 10,200 cfs in Patterson-Newman area
Rain reported every month	65-66	1971	New Don Pedro Reservoir
Waterford Irrigation District merges with Modesto Irrigation District	1978		Completed
		1982-	83 Highest Rainfall season, recorded at 26.01 inches
Major flooding causes Don Pedro Reservoir spillway to be opened for the first time in history	1997		Dan Darke Paren i su'il
		2017	for the second time in history

11

50 YEARS OF RAINFALL

Source: Modesto Irrigation District

How Does Agricultural Income in Stanislaus County Compare to State Totals?

State	
United States	357,252,284,000
Calitornia	46,041,467,000
owa	26,840,363,000
Nebraska	21,558,070,000
lexas	20,878,502,000
Minnesota	1/,054,6/3,000
Ilinois	16,258,840,000
Kansas	15,4/1,94/,000
Wisconsin	10,/6/,618,000
North Carolina	10,576,290,000
ndiana	10,049,458,000
Washington	9,918,275,000
South Dakota	9,339,191,000
Vlissouri	8,914,581,000
Georgia	8,433,423,000
Chio	8,348,246,000
Arkansas	8,214,004,000
North Dakota	8,177,694,000
-lorida	7,745,136,000
Vlichigan	7,401,405,000
daho	7,127,397,000
Pennsylvania	6,406,362,000
Oklahoma	6,189,545,000
Colorado	6,168,553,000
Kentucky	5,440,918,000
Viississippi	5,206,292,000
	5,052,760,000
	4,953,354,000
Oregon	4,573,587,000
Anzona	4,100,700,000
vioritaria Stanialaus Count	3,073,102,000
	3 338 466 000
Toppossoo	3,330,400,000
Now Movico	2 861 960 000
	2,001,700,000
South Carolina	2 120 309 000
Maryland	2,120,007,000
Itah	1 657 941 000
Wyoming	1 392 407 000
Delaware	1 209 903 000
New Jersev	1 025 883 000
Vermont	785 934 000
West Virginia	690 610 000
Hawaii	648 559 000
Nevada	596,250,000
Maine	527,730,000
Connecticut	514,256,000
Massachusetts	386.879.000
New Hampshire	209.939.000
Rhode Island	72.080.000
Alaska	33.905.000

STANISLAUS COUNTY AG FACTS

FARM DATA

Number of Farms: 4,143 Land in Farms: 768,046 Acres Average Size of Farm: 185 Acres Average Age of Farmer in Stanislaus County: 59.3 (US: 58.3) Farm Operators: 2,450 Family Farms: 97% Family Farms (US), 88% Small Family Farms (US) Full Time Farmers: 48% called farming their primary occupation, 52% had a different primary occupation (US) Information obtained from the 2012 Census of Agriculture

AG FACTS

Stanislaus Production Rankings in the State

DAIRY FACTS

Five counties, including Stanislaus, represents 72% of the state's milk production. Stanislaus has 185 dairies, with an average of 932 cows per dairy.

Source: 2012 Census of Agriculture

Source: California Agricultural Statistics Review 2016-2017 Source: California Dairy Statistics Annual 2017 Data

¹ USDA Economic Research Service 2016 info

PEST EXCLUSION:

- Interior Pest Exclusion enforcement of quarantines, inspection of packages, phytosanitary certification of exports
- Exterior Pest Exclusion enforcement of guarantines for materials subject to infestation that have crossed into California with a Stanislaus County destination
- Nursery and Seed licensing, pest cleanliness inspections, registration and certification, truth in labeling and quality, soil and plant laboratory permitting

PEST MANAGEMENT:

- Managing nuisance pests of agriculture & human health
- Programs include glassy-winged sharpshooter, ground squirrels, capeweed, etc

PESTICIDE USE ENFORCEMENT:

- Provides for the proper, safe, and effective use of pesticides for agricultural production and protection of public health and safety
- Prohibiting, regulating or ensuring proper stewardship of pesticides for environmental protection
- Ensuring safe working conditions, use of proper protective equipment and training for employees working with or around pesticides
- Pesticide use reporting, incident investigations, outreach activities, and monitoring applications

AGRICULTURAL COMMISSIONER PROGRAMS

PEST DETECTION:

- Early detection of insect pests
- Administering specific "action plans" for unwanted agricultural pests
- Maintaining properly trained and equipped pest detection teams

PEST ERADICATION:

- Local government liaison to CDFA after pest species discovered
- Eradication of particular pest species

SEED CERTIFICATION:

- Inspect retail and wholesale seed sellers
- Obtain samples for seed germination and purity testing
- Labeling inspections for compliance with state requirements
- Certification services for growers and processors in cooperation with the California Crop Improvement Association

NURSERY **INSPECTION:**

 Inspections of growing, propagation, production and sale sites of nursery stock to assure cleanliness from pests, true variety and vigorous healthy plants for sale to the consumer

- **FRUITS, NUTS & VEGETABLE STANDARDIZATION:** Compliance of California's minimum standards for quality and marketing produce commercially grown and/or marketed in the state
- Direct Marketing, Certified Producers and Certified Farmers Markets
- Organic law enforcement
- Local protection to growers, marketers & consumers

EGG INSPECTION:

- Inspection of retailers and packers of eggs in California
- Enforcement of state & federal health, quality, grade & labeling standards

APIARY INSPECTION:

- Registration and site location of honeybee colonies in the county
- Colony strength & health inspections

CROP STATISTICS:

- Annual crop report regarding the gross production and value of the county's commodities
- Agriculture disaster surveys used by other agencies offering disaster relief

STAFFING

AGRICULTURAL COMMISSIONER'S OFFICE

Agricultural Commissioner/Sealer of Weights & Measures Milton O'Haire

Assistant Agricultural Commissioner/Sealer Daniel Bernaciak

Deputy Agricultural Commissioner/Sealers

Marline Azevedo Wendy Hahn Steve Logan Kelle Schroeder

Agricultural/Weights & Measures Inspectors

Angela Bates Arpinder Brar Greg Brockman Mary Canchola Gerardo Castaneda Christopher Egli Cristina Galvan Deana Guerrero **Richard Homer** Amy Lomeli Melissa Lovett **Forrest Meares** Cari Miller Sabrina Poth Kim Reed Hector Rodriguez Amit Sandhu Carolyn Sizemore Wesley Van Blair **Becky Van Cleave** Nathaniel Vieira

Information and Technology Nathan Leon Michael Funk Sue Boelk

Administrative Support

Susan Azevedo Bertha Castillo Cassy Costa Ramona Cunningham Trina Lagier Cheryl Horton Michael Sise Tania Thomas Debbie Wohld

Seasonal Agricultural Assistants

Gay Allard-Johnson Zach Baptista **Evelyn Barber** Sandra Blevins **Misael Canales-Salas** Susan Convers James Friedrich George Gold **Becky Graham** Jose Hernandez Nela Holsapple Alexa Ladd **Michael McFall** Danielle Mitchell Eva Padilla **Rafael Ramirez Charles Smith Devin Thompson** Max Wilson

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION, STANISLAUS COUNTY

County Director Roger Duncan, Orchard Crops

Farm Advisors

Kari Arnold, Area Orchards & Pomology Theresa Becchetti, Livestock & Natural Resources Marsha Campbell, Field & Annual Forage Crops, Dairy Manure Management (Emeritus) Jennifer Heguy, Dairy Ed Perry, Urban Horticulture (Emeritus) Jhalendra Rijal, PhD, Integrated Pest Management Zheng Wang, Vegetable Crops

Nutrition, Family & Consumer Sciences Programs

Dennis Carrasquilla, Community Education Specialist Liz Carrillo, Community Education Specialist Stephanie Martinez, Community Education Specialist Miriam Sanchez, Community Education Specialist Rosalinda Ruiz, Community Education Specialist Jaci Westbrook, Nutrition Program Manager

4-H Youth Development ProgramJoAnn Ratto,4-H Program Representative

Administrative & Agricultural Assistants Staff

Yolanda Cruz, Admin Secretary (4-H) Kim Delucchi, Office Manager, Confidential Assistant IV Daniel Green, Ag Assistant II Tania Herrera, Student Ag Assistant James Morrow, Admin Clerk II Michael Rosenblum, Admin Secretary

Stanislaus County Department of Agriculture & Weights and Measures 3800 Cornucopia Way, Suite B, Modesto, CA 95358 Phone: (209) 525-4730 Fax: (209) 525-4790 E-mail: AGCOM50@stancounty.com http://www.stanag.org